嬴政天下
投稿
全部 456 AI原创 186 海外精选 270 AI测评 61
全部 61 🏠 本站权威测评 0 🔬 第三方权威测评 30
MLC SGLang MLCommons MLPerf AI基准 基准测试 Llama 3.1 性能优化 Chatbot Arena AI推理 MoE模型 推理优化 边缘AI NVIDIA 推理基准
LMSYS

SGLang 即日支持 DeepSeek-V3.2 稀疏注意力机制

SGLang 团队宣布即日(Day 0)支持 DeepSeek-V3.2 模型。该模型基于 DeepSeek-V3.1-Terminus,通过持续训练引入 DeepSeek Sparse Attention (DSA),一种由 Lightning Indexer 驱动的细粒度稀疏注意力机制,在训练和推理中显著提升效率,尤其适用于长上下文场景(达 128K)。SGLang 集成了 Lightning Indexer 支持、Native Sparse Attention (NSA) 后端(包括 FlashMLA 和 FlashAttention-3 Sparse),并优化了动态缓存管理,降低内存开销,实现 GPU 优化的稀疏注意力。文章提供 NVIDIA、AMD 和 NPU 的快速启动命令,并展望未来功能如 Multi-token Prediction (MTP) 和 FP8 KV Cache。

SGLang DeepSeek-V3.2
02-04 125

© 1998-2026 嬴政天下 All rights reserved.

继续秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

关于赢政天下 投稿 RSS Sitemap 隐私政策 服务条款