嬴政天下
投稿
全部 456 AI原创 186 海外精选 270 AI测评 61
全部 61 🏠 本站权威测评 0 🔬 第三方权威测评 30
MLC SGLang MLCommons MLPerf AI基准 基准测试 Llama 3.1 性能优化 Chatbot Arena AI推理 MoE模型 推理优化 边缘AI NVIDIA 推理基准
LMSYS

单H200部署1TB模型:INT4 QAT RL端到端实践

受Kimi K2团队启发,SGLang RL团队成功实现INT4 Quantization-Aware Training (QAT)全流程。通过训练阶段的fake quantization和推理阶段的真实W4A16量化,实现了与BF16全精度相当的稳定性和训推一致性。极致INT4压缩让约1TB规模模型单节点H200(141GB)部署,避免跨节点通信瓶颈,大幅提升部署效率。本文详解开源生态下完整pipeline的技术细节,提供高性能低成本的实用参考。项目由SGLang RL、InfiXAI、蚂蚁集团Asystem & AQ Infra、slime和RadixArk团队联合完成,已同步至slime和Miles社区。(128字)

INT4 QAT 量化感知训练
02-04 96

© 1998-2026 嬴政天下 All rights reserved.

继续秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

关于赢政天下 投稿 RSS Sitemap 隐私政策 服务条款