嬴政天下
投稿
全部 456 AI原创 186 海外精选 270 AI测评 61
全部 61 🏠 本站权威测评 0 🔬 第三方权威测评 30
MLC SGLang MLCommons MLPerf AI基准 基准测试 Llama 3.1 性能优化 Chatbot Arena AI推理 MoE模型 推理优化 边缘AI NVIDIA 推理基准
LMSYS

PD-Multiplexing:GreenContext驱动的高好吞吐LLM服务新范式

本文介绍我们在SGLang中支持全新服务范式PD-Multiplexing的初步成果,该范式旨在提升LLM服务的goodput。通过NVIDIA新功能GreenContext,实现同一进程内GPU资源的轻量级细粒度分区,支持prefill和decode阶段的intra-GPU空间共享,避免KV cache跨实例迁移,并动态分配SM资源。该方法解耦prefill和decode执行,确保严格SLO(如TTFT和ITL),基准测试显示在H200上相比chunked-prefill显著提升TTFT,在8xA100s真实负载下goodput最高提升3.06x。未来将提供详细教程。(128字)

PD-Multiplexing GreenContext
02-04 89
LMSYS

SGLang 即日支持 DeepSeek-V3.2 稀疏注意力机制

SGLang 团队宣布即日(Day 0)支持 DeepSeek-V3.2 模型。该模型基于 DeepSeek-V3.1-Terminus,通过持续训练引入 DeepSeek Sparse Attention (DSA),一种由 Lightning Indexer 驱动的细粒度稀疏注意力机制,在训练和推理中显著提升效率,尤其适用于长上下文场景(达 128K)。SGLang 集成了 Lightning Indexer 支持、Native Sparse Attention (NSA) 后端(包括 FlashMLA 和 FlashAttention-3 Sparse),并优化了动态缓存管理,降低内存开销,实现 GPU 优化的稀疏注意力。文章提供 NVIDIA、AMD 和 NPU 的快速启动命令,并展望未来功能如 Multi-token Prediction (MTP) 和 FP8 KV Cache。

SGLang DeepSeek-V3.2
02-04 102
LMSYS

NVIDIA DGX Spark 深度评测:本地 AI 推理新标杆

NVIDIA DGX Spark 是一款紧凑型一体机,将超级计算级性能带入桌面工作站。通过 NVIDIA 早期访问计划,我们深入测试了这款设备。它搭载 GB10 Grace Blackwell Superchip,提供 128 GB 统一内存,支持 FP4 精度下高达 1 PFLOP 计算力。测试显示,在 SGLang 和 Ollama 框架下,DGX Spark 擅长运行小型模型(如 Llama 3.1 8B),批处理时吞吐量出色;大型模型(如 Llama 3.1 70B)适合原型开发。统一内存设计消除数据传输开销,投机解码可加速 2 倍。尽管内存带宽(273 GB/s)是瓶颈,但其外观精美、散热优秀,适合模型实验、边缘 AI 研究。两台联机可运行 4050 亿参数模型,是开发者理想平台。(128 字)

NVIDIA DGX Spark AI推理
02-04 177
LMSYS

SGLang 与 NVIDIA 携手加速 InferenceMAX 基准与 GB200 性能

SGLang 和 NVIDIA 团队紧密合作,针对 NVIDIA Blackwell 架构优化推理性能,利用 FP8 attention、NVFP4 MoE 和 PD-Disaggregated Expert Parallelism 等特性,在 GB200 NVL72 系统上实现 DeepSeek R1 模型的惊人吞吐量:每 GPU 预填充 26k 输入 token/秒,解码 13k 输出 token/秒。在 SemiAnalysis InferenceMAX v1 基准中,Blackwell GPU(GB200/B200)搭配 SGLang 比 Hopper GPU(H100/H200)性能提升高达 4 倍,覆盖整个延迟-吞吐量 Pareto 前沿。SGLang 通过 Prefill-Decode 分离、大规模专家并行等系统级优化,充分发挥 Blackwell 硬件潜力。未来将进一步优化 DeepSeek v3.2 等模型,并加强与 SemiAnalysis 合作。(128 字)

SGLang NVIDIA Blackwell
02-04 111
LMSYS

SGLang-Jax:原生TPU推理的开源利器

SGLang-Jax是由SGLang-Jax团队推出的全新开源推理引擎,完全基于Jax和XLA构建。它融合SGLang的高性能服务器架构,利用Jax编译模型前向传播,实现快速原生TPU推理,同时支持连续批处理、前缀缓存、张量并行、专家并行、推测解码、内核融合等高级特性。基准测试显示,其性能匹敌或超越其他TPU推理方案,并在GPU方案中保持竞争力。项目代码开源于GitHub,适用于Google DeepMind、xAI等领先AI实验室的Jax生态。架构纯Jax实现,集成Ragged Paged Attention v3、MoE优化及EAGLE推测解码等关键技术,大幅降低调度开销并提升吞吐量。未来路线图涵盖更多模型支持、量化内核及RL集成。(128字)

SGLang-Jax TPU推理
02-04 95
LMSYS

NVIDIA DGX Spark上优化GPT-OSS:释放Spark最大潜力

NVIDIA DGX Spark正式发布一周后,我们与NVIDIA紧密合作,在其上成功部署了GPT-OSS 20B和GPT-OSS 120B模型,支持SGLang框架。性能亮眼:GPT-OSS 20B达到约70 tokens/s,GPT-OSS 120B约50 tokens/s,堪称目前最先进水平,完全支持本地编码代理运行。本文详细指导如何在DGX Spark上运行这些模型、进行性能基准测试、连接Open WebUI聊天界面,甚至通过LMRouter完全本地化运行Claude Code。附带详细基准表格和演示视频,助力用户将DGX Spark打造成强大的本地AI工作站。(128字)

NVIDIA DGX Spark GPT-OSS
02-04 111
LMSYS

无免费午餐:MiniMax M2解构高效注意力机制

SGLang宣布首日支持MiniMax全新旗舰模型M2,这是一款紧凑、高速且成本效益高的MoE模型,总参数2300亿、活跃参数仅100亿,专为编码和代理任务打造顶级性能,同时保持强大通用智能。尽管高效注意力机制理论诱人,MiniMax团队在M2开发中最终回归全注意力。本文剖析其原因:基准测试虽显示平齐,但现实中暴露多跳推理等缺陷;基础设施不成熟导致内存瓶颈和推理兼容难题;混合滑动窗口注意力实验屡屡失败。成功需评估、数据与基础设施三管齐下,方能从理论走向生产。(128字)

MiniMax M2 高效注意力
02-04 97
LMSYS

SGLang Diffusion:加速视频与图像生成

SGLang Diffusion 将 SGLang 的顶尖性能扩展至扩散模型的图像和视频生成,支持主流开源模型如 Wan、Hunyuan、Qwen-Image、Qwen-Image-Edit 和 Flux。通过 OpenAI 兼容 API、CLI 和 Python 接口,提供 1.2x 至 5.9x 的加速效果。与 FastVideo 团队合作,构建从训练到生产的全生态。架构采用 ComposedPipelineBase 和高级并行技术(如 USP、CFG-parallelism),确保高效灵活。基准测试显示,在 H100/H200 GPU 上显著优于 Hugging Face Diffusers。未来将打造端到端扩散生态。(128字)

SGLang Diffusion 扩散模型
02-04 79
LMSYS

🚀 AutoRound 携手 SGLang:高效量化模型推理新纪元

Intel Neural Compressor 团队宣布 AutoRound 与 SGLang 正式合作,支持低比特量化以实现高效 LLM 推理。AutoRound 通过符号梯度优化技术,实现 INT2-INT8 等低比特量化,在 INT2 精度下相对准确率提升高达 2.1 倍,量化 72B 模型仅需 37 分钟。集成后,开发者可直接在 SGLang 运行时部署量化模型,显著降低延迟。该方案支持多种架构、设备和格式,社区下载量超 200 万。未来将优化 MXFP4/NVFP4 和混合比特量化,推动多模态和代理任务部署。(128 字)

AutoRound SGLang
02-04 78
LMSYS

Miles发布:点燃大规模MoE训练的企业级RL框架

千里之行,始于足下。今天,RadixArk团队发布了Miles,一个专为大规模MoE训练和生产环境打造的企业级强化学习框架。Miles基于轻量级RL框架slime构建,后者已悄然驱动众多后训练管道和大模型MoE训练(如GLM-4.6)。slime证明了轻量设计的可行性,而Miles则更进一步,提供企业级可靠性和大规模控制。新功能包括真On-Policy支持(KL散度精确为0)、内存优化、在线草稿模型训练(rollout加速25%以上)等。未来将支持GB300硬件、多模态训练和弹性扩展,助力高效可靠的RL训练。(128字)

Miles 强化学习
02-04 77
LMSYS

LMSYS博士奖学金计划正式启动

LMSYS欣喜宣布博士奖学金计划正式启动!该计划专为美国全日制博士生设计,针对那些在开源AI基础设施社区做出重大贡献的学生。获奖者将获得高达50,000美元资助,用于未来两年的学费和相关费用。申请期为2025年11月23日至12月7日,评估标准包括研究与开源贡献的影响力,以及与LMSYS兴趣领域的契合度。获奖名单将于截止后几周公布。感兴趣的博士生可将申请声明和简历发送至fellowship@lmsys.org。该计划由Ying and Lianmin Giving Fund捐赠支持,助力开源AI生态发展。(128字)

博士奖学金 开源AI
02-04 83
LMSYS

统一FP8:超越混合精度,实现稳定加速的MoE RL训练

我们实现了RL中全FP8采样和训练流程。实验显示,对于MoE模型,使用BF16训练结合FP8 rollout时,模型越大,训练-推理不一致性越严重。相比之下,统一FP8用于训练和rollout,能有效消除量化误差导致的训练-推理不一致,提升RL训练的速度与稳定性。本文详述FP8硬件基础、格式选择、尺度计算及量化策略,支持Qwen3-4B和Qwen3-30B-A3B的miles框架即插即用,由InfiXAI、Ant Group AQ、SGLang RL和Miles团队联合完成。(128字)

FP8 RL训练
02-04 77
1 2 3

© 1998-2026 嬴政天下 All rights reserved.

继续秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

关于赢政天下 投稿 RSS Sitemap 隐私政策 服务条款