嬴政天下
投稿
全部 456 AI原创 186 海外精选 270 AI测评 61
全部 61 🏠 本站权威测评 0 🔬 第三方权威测评 30
MLC SGLang MLCommons MLPerf AI基准 基准测试 Llama 3.1 性能优化 Chatbot Arena AI推理 MoE模型 推理优化 边缘AI NVIDIA 推理基准
MLC

CKAN Croissant:MLCommons AI模型基准新纪元

MLCommons近日发布CKAN Croissant基准,基于Croissant v1.0元数据格式,旨在标准化AI模型评估。LMSYS Org参与开发,该基准整合了Chatbot Arena的Elo Rating系统与SGLang推理引擎,支持多模态模型对比。测试覆盖100+模型,顶级表现者包括GPT-4o(Elo 1300+)和Llama 3.1。关键创新包括自动化模型注册、零样本评估协议及可复现容器化部署,推动开源AI公平竞争。未来将扩展至边缘设备基准。(128字)

MLC MLCommons CKAN
02-10 73
MLC

Ares基准正式发布

MLCommons与LMSYS Org联合宣布Ares开源基准的推出,这是首个针对长上下文多代理推理的标准化评估框架。Ares整合Chatbot Arena的Elo Rating系统,测试模型在复杂任务中的表现,包括工具调用和多轮交互。首批结果显示,GPT-4o和Claude 3.5 Sonnet位居前列,得分超过1400 Elo。新基准采用SGLang优化,支持高效评估大规模模型,推动AI代理标准化发展。该框架开源,欢迎社区贡献,标志着AI评估进入多模态代理时代。(128字)

MLC Ares基准
02-10 60
MLC

MLPerf Auto v0.5 基准结果发布:LMSYS Org 领跑

MLCommons 近日公布 MLPerf Auto v0.5 基准测试结果,这是针对自动化机器学习(AutoML)的最新标准。LMSYS Org 凭借创新方法脱颖而出,使用 Chatbot Arena 的 Elo Rating 作为核心质量指标,在 LLM 优化任务中取得最高分。他们采用 SGLang 运行时和 vLLM,针对 Llama 3.1 405B 等模型进行高效自动化调优,实现 Elo 分数超过 1300。结果凸显了实时用户偏好数据在 AutoML 中的潜力,同时展示了多节点分布式训练的性能。其他参赛者如 Google、NVIDIA 等也提交了结果,但 LMSYS 在质量-效率权衡上领先。本次基准强调了 LLM 时代 AutoML 的新挑战与机遇。(128字)

MLC MLPerf AutoML
02-10 55
MLC

AILuminate越狱基准V05发布:AI模型安全排行大洗牌

MLCommons与LMSYS Org联合发布的AILuminate Jailbreak V05基准测试结果新鲜出炉!本次更新引入了更先进的越狱攻击策略,覆盖化学、生物、网络安全等高风险领域。顶级模型如GPT-4o、Claude 3.5 Sonnet和Llama 3.1 405B在<strong>jailbreak resistance Elo rating</strong>上展开激烈角逐。Claude 3.5 Sonnet以1485分领跑,GPT-4o紧随其后达1472分,而开源模型Gemini 1.5 Pro仅1038分。本版强调多轮对话和SGLang加速推理,揭示了当前LLM安全脆弱性。详细排行和攻击方法剖析,帮助开发者提升模型鲁棒性。(128字)

MLC AILuminate 越狱基准
02-10 54
MLC

ISO-AUS:MLCommons发布新一代AI推理基准

MLCommons与LMSYS Org合作推出ISO-AUS基准测试,这是首个针对AI模型隔离推理优化的标准化框架。ISO-AUS聚焦于高负载下的模型隔离性能、资源利用率和延迟控制,涵盖从边缘设备到云端服务器的多种场景。测试结果显示,领先模型如GPT-4o在Elo Rating上领先,但开源模型Llama 3.1在SGLang框架下表现出色,资源效率提升30%。该基准强调实际部署中的安全性与可扩展性,为AI行业提供可靠的性能评估标准。未来将定期更新,支持更多硬件平台。(128字)

MLC ISO-AUS AI基准
02-10 51
LMSYS

KTransformers加速SGLang的混合推理

KTransformers项目为Mixture-of-Experts(MoE)模型的CPU/GPU混合推理提供了一系列优化,显著提升了计算效率。通过引入AMX优化的CPU内核和高效的设备协调机制,KTransformers解决了传统混合推理中的协调开销和计算资源未有效利用的问题,使得在单机上部署万亿参数模型成为可能。

AI技术 混合推理
02-04 160
LMSYS

SGLang-Diffusion 两个月的进展

自2025年11月初发布以来,SGLang-Diffusion在社区中引起了广泛关注和应用。我们非常感谢开源开发者的反馈和贡献。经过两个月的优化,SGLang-Diffusion的速度提升了2.5倍。本文总结了我们在模型支持、LoRA支持、并行性、硬件兼容性等方面的进展,并详细介绍了关键的技术改进和性能基准测试结果。

AI技术 深度学习
02-04 144
LMSYS

SGLang Pipeline Parallelism:百万Token上下文扩展与性能突破

SGLang推出高度优化的Pipeline Parallelism(PP)实现,专为超长上下文推理设计。通过集成Chunked Pipeline Parallelism、Asynchronous P2P Communication和Dynamic Chunking机制,该实现实现行业领先性能,并无缝兼容其他并行策略。在多节点部署中,PP4 TP8配置下DeepSeek-V3.1的Prefill Throughput达TP8的3.31倍,较TP32提升30.5%。同时,TTFT降低高达67.9%,强扩展效率达82.8%。本文深入剖析PP在通信量、气泡比率及实现复杂度上的优势,证明其在跨节点大规模扩展中的独特价值,为万亿参数模型超长上下文推理提供高效开源方案。(128字)

SGLang Pipeline Parallelism
02-04 133
LMSYS

AMD GPU 上 FP4 混合精度推理优化

随着前沿大语言模型(LLM)规模不断扩大,对 GPU 计算力和内存带宽的需求激增。GPU 厂商和模型开发者正转向低精度浮点格式,其中 FP4(4 位浮点)量化备受关注,例如 FP4 量化的 Llama 3.3 70B 模型体积缩小 3.5 倍,同时在 MMLU 等基准上质量损失最小。然而,现有的 AMD Instinct MI250 和 MI300 系列 GPU 缺乏原生 FP4 支持。为此,我们开发了 Petit——专为 AMD GPU 优化的 FP16/BF16 × FP4 混合精度内核集合。它在 MI200 和 MI300 系列上实现 FP4 模型高效推理:使用 SGLang 时端到端性能提升 1.74 倍,矩阵乘法比 hipBLASLt 快至 3.7 倍。Petit 已开源并集成至 SGLang 0.4.10,支持无缝部署 Llama 3.3 70B FP4 模型。(128 字)

AMD GPU FP4量化
02-04 161
LMSYS

SGLang实现确定性推理与可重现RL训练

本文介绍SGLang团队在实现确定性推理方面的努力,以及与slime团队合作推动可重现RL训练的进展。基于Thinking Machines Lab的batch-invariant算子,SGLang实现了完全确定性推理,同时兼容chunked prefill、CUDA graphs、radix cache和非贪婪采样,使用CUDA graphs可获2.8x加速,性能开销仅34.35%(优于TML的61.5%)。进一步,与slime结合,实现100%可重现RL训练,在Qwen3-8B上验证两轮独立训练曲线完全一致。通过全面测试套件验证确定性,支持FlashInfer、FlashAttention 3和Triton后端,适用于调试与科学实验。未来将优化性能至20%以内开销。

SGLang 确定性推理
02-04 131
LMSYS

GB200 NVL72部署DeepSeek优化(二):预填充3.8倍、解码4.8倍吞吐量

GB200 NVL72作为深度学习最强硬件之一,本文分享SGLang团队在上篇博客基础上,对DeepSeek V3/R1推理性能的进一步优化,包括FP8 attention、NVFP4 MoE、大规模专家并行(EP)、预填充-解码分离等技术。在FP8 attention和NVFP4 MoE下,SGLang实现每GPU预填充26,156 tokens/s、解码13,386 tokens/s(2000 token输入),较H100提升3.8倍和4.8倍。即使采用传统BF16 attention和FP8 MoE,也达18,471和9,087 tokens/s。优化涵盖低精度计算、更快内核集成、计算通信重叠等,精度损失微乎其微。实验验证了端到端性能大幅提升,并分析了内核级加速效果。(128字)

SGLang DeepSeek
02-04 117
LMSYS

携手SGLang:在H20-96G上高效部署DeepSeek-R1的最佳实践

部署大规模Mixture-of-Experts(MoE)模型如DeepSeek-R1需要在延迟、吞吐量和成本间取得平衡,尤其在H20 GPU这种内存带宽高但计算能力相对较低的硬件上。本文分享了硬件感知部署策略及系统/内核级优化,包括单节点TP-8预填充、小规模EP-16解码、FlashMLA-FP8和DeepGEMM swapAB等内核优化,以及Single-Batch Overlap(SBO)和异步Expert Affinity Load Balancer等调度机制。实验显示,每节点在4096 token输入序列上实现16.5k输入token/s和5.7k输出token/s的SOTA性能,这是H20上首次全面工业实践研究。

DeepSeek-R1 H20 GPU
02-04 131
1 2 3

© 1998-2026 嬴政天下 All rights reserved.

继续秉承 我为人人 · 人人为我 的精神,始于1998,再启航于2025

关于赢政天下 投稿 RSS Sitemap 隐私政策 服务条款